Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38398690

RESUMEN

Before the invasion of the fall armyworm (FAW) Spodoptera frugiperda into Africa, smallholder farmers had been using indigenous practices such as applying fish soup to plants to manage stemborer pests. Although farmers have since begun adapting this practice against FAW, no attempt has been made to scientifically evaluate this practice. Therefore, we assessed the efficacy of applying fish soup to maize plants that were artificially infested with FAW under semi-field conditions. Our results showed that foliar damage is inversely correlated with the concentration of a fish soup and sugar solution, with the highest (100%) concentration resulting in the lowest foliar damage and the highest plant recovery. The FAW foliar damage results for maize plants treated with 100%, 50%, 10% fish soup and sugar, and distilled water were 46.3 ± 5.6, 51.1 ± 5.0, 71.6 ± 5.2, and 99.4 ± 0.4%, respectively, whereas plant recovery results from the same treatments were 35.2 ± 3.7, 31.1 ± 5.4, 20.0 ± 4.6, and 0.0 ± 0.0%, respectively. A concentration of fish soup and sugar solution of at least 25.9% was required to achieve the lowest foliar damage of 17.8% and peak plant recovery of 73.6%. Fish soup and sugar solutions attracted a wide range of insects, including potential natural enemies (predators and parasitoids) of FAW, in a dose-dependent manner. Maize plants treated with fish soup and sugar showed higher chlorophyll content and better growth than the control did. Proximate and chemical analysis showed that fish soup contains essential plant growth nutrients (e.g., nitrogen, phosphorus, and calcium). Through GC-MS analyses, we identified 76 volatile organic compounds in fish soup, of which 16 have been reported as insect attractants, highlighting their potential ecological significance. Therefore, the indigenous pest management practices for FAW, such as the use of fish soup, deserve particular attention. These practices could contribute to food security and improve the livelihoods of vulnerable communities. Further field validation studies, economic analyses, product development, and optimisation are therefore required to optimise the use of fish soup based on fish waste.

2.
Foods ; 12(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38137289

RESUMEN

Interest in Metschnikowia (M.) pulcherrima is growing in the world of winemaking. M. pulcherrima is used both to protect musts from microbial spoilage and to modulate the aromatic profile of wines. Here, we describe the isolation, characterization, and use of an autochthonous strain of M. pulcherrima in the vinification of Chasselas musts from the 2022 vintage. M. pulcherrima was used in co-fermentation with Saccharomyces cerevisiae at both laboratory and experimental cellar scales. Our results showed that M. pulcherrima does not ferment sugars but has high metabolic activity, as detected by flow cytometry. Furthermore, sensory analysis showed that M. pulcherrima contributed slightly to the aromatic profile when compared to the control vinifications. The overall results suggest that our bioprospecting strategy can guide the selection of microorganisms that can be effectively used in the winemaking process.

3.
Microorganisms ; 11(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37630664

RESUMEN

The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is a polyphagous pest highly damaging to maize and other food crops in Africa, particularly in Côte d'Ivoire. Chemical pesticides not only have often proved to be unsuccessful, but cause adverse effects on the environment and human health; therefore, entomopathogenic fungi could represent an alternative biocontrol solution. Against this background, fungi were isolated from soil samples collected in maize fields in three regions of Côte d'Ivoire, by the methods of soil dilution and baiting with Galleria mellonella. The resulting 86 fungal isolates were phenotypically and genetically identified. The pathogenicity of seven isolates of Metarhizium spp., three isolates of Beauveria bassiana and two isolates of Trichoderma sp. was evaluated on fifth instar larvae (L5) of G. mellonella. Larval mortality rates and the median lethal time (LT50) were determined seven days after inoculation for each of these selected isolates. The median lethal concentration (LC50) was determined for a selection of isolates. Beauveria bassiana isolate A214b was the most effective, causing 100% mortality, with an LT50 of 2.64 days and an LC50 of 1.12 × 104 conidia mL-1. Two other promising isolates, A211 and A214a, belonging to B. bassiana, caused 100% mortality with LT50 values of 3.44 and 4.04 days, respectively. Mortality caused by Metarhizium isolates varied from 65.38% to 100%, with Metarhizium anisopliae isolate T331 causing 100% mortality with an LT50 of 3.08 days at an LC50 of 3.33 × 104 conidia mL-1. Trichoderma sp. isolates were the least pathogenic ones. Beauveria bassiana and Metarhizium isolates showed to be virulent against the model Lepidopteran G. mellonella and will be tested on S. frugiperda.

4.
Insects ; 14(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37367378

RESUMEN

An understanding of insect olfaction allows for more specific alternative methods of pest control. We evaluated the responses of the western flower thrips (WFT, Frankliniella occidentalis) in a Y-olfactometer to estimate gas-phase concentrations of the aggregation pheromone neryl (S)-2-methylbutanoate and known kairomones such as methyl isonicotinate, (S)-(-)-verbenone, and p-anisaldehyde. The gas-phase concentrations of these compounds were obtained from the release rates measured in dynamic headspace cells. The compounds were collected from the headspace using dried solid-phase extraction (SPE) cartridges and analyzed with a triple quadrupole GC-MS/MS. We observed that the aggregation pheromone significantly attracted WFT females at doses of 10 and 100 µg, whereas methyl isonicotinate and p-anisaldehyde significantly attracted WFT females at the highest dose. Verbenone did not produce any significant results. A completely different picture was obtained when the gas-phase concentrations were considered. The minimal gas-phase concentrations of the pheromone required to attract WFT females was 0.027 ng/mL, at least 100 times lower than that of the other two compounds. The relevance and implications of our results are discussed in light of the insect's biology and pest management methods.

5.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142393

RESUMEN

Flaxseeds are typically consumed either as whole flaxseed, ground flaxseed, flaxseed oil, partially defatted flaxseed meal, or as a milk alternative. They are considered a rich source of vitamins, minerals, proteins and peptides, lipids, carbohydrates, lignans, and dietary fiber, which have shown hypolipidemic, antiatherogenic, anticholesterolemic, and anti-inflammatory property activity. Here, an in vitro batch culture model was used to investigate the influence of whole milled flaxseed and partially defatted milled flaxseed press cake on the gut microbiota and the liberation of flaxseed bioactives. Microbial communities were profiled using 16S rRNA gene-based high-throughput sequencing with targeted mass spectrometry measuring lignan, cyclolinopeptide, and bile acid content and HPLC for short-chain fatty acid profiles. Flaxseed supplementation decreased gut microbiota richness with Firmicutes, Proteobacteria, and Bacteroidetes becoming the predominant phyla. Secoisolariciresinol, enterodiol, and enterolactone were rapidly produced with acetic acid, butyric acid, and propionic acid being the predominant acids after 24 h of fermentation. The flaxseed press cake and whole flaxseed were equivalent in microbiota changes and functionality. However, press cake may be superior as a functional additive in a variety of foods in terms of consumer acceptance as it would be more resistant to oxidative changes.


Asunto(s)
Lino , Microbioma Gastrointestinal , Lignanos , Antiinflamatorios , Ácidos y Sales Biliares , Ácido Butírico , Fibras de la Dieta/análisis , Ácidos Grasos Volátiles , Lino/metabolismo , Humanos , Lignanos/química , Aceite de Linaza , Metaboloma , Propionatos , ARN Ribosómico 16S/metabolismo , Vitaminas/análisis
6.
Life (Basel) ; 12(6)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35743838

RESUMEN

Little is known on what impact shade trees have on the physiology of Coffea canephora (robusta coffee) under tropical humid conditions. To fill this gap, a field experiment was conducted in the Ecuadorian Amazon to investigate how growth, nutrition (leaf N), phenological state (BBCH-scale) and yield of 5-year-old robusta coffee shrubs are affected by the presence or absence of leguminous trees, the type (organic v conventional) and intensity of management. The experiment was a factorial 5 × 4 design with four cropping systems: intensive conventional (IC), moderate conventional (MC), intensive organic (IO) and low organic (LO), and with five shading systems in a split-plot arrangement: full sun (SUN), both Erythrina spp. and Myroxylon balsamum (TaE), M. balsamum (TIM), E. spp. (ERY) and Inga edulis (GUA). Three monthly assessments were made. Cherry yields of coffee shrubs under moderate shade (c. 25%) were similar to those under high light exposure. Coffee shrubs grown with either E. spp. or I. edulis were taller (+10%) and had higher leaf N concentrations (22%) than those grown without consistent shade. Unless receiving c. 25% of shade, coffee shrubs grown under organic cropping systems showed reduced growth (25%). No correlation was found between height, cherry yield and leaf N. Both shading and cropping systems affected leaf N concentration, also depending on phenological state and yield. Further research is needed to confirm our findings in the long-term as well as to elucidate how leguminous trees may induce physiological responses in robusta coffee under humid tropical conditions.

7.
Microorganisms ; 10(4)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35456815

RESUMEN

Plant-growth-promoting rhizobacteria (PGPR) are soil bacteria colonizing the rhizosphere and the rhizoplane which have an effect on plant growth through multiple chemical compounds. Rhizobacteria with beneficial effects for plants could therefore be used to reduce the dependence on synthetic chemical fertilizers in conventional agriculture. Within this study, 67 endophytic fungi and 49 bacteria were isolated from root samples from 3 different commercial productions: an off-ground tomato production in a greenhouse, an organic production and a conventional production, both in a soil tunnel. Following morphological selection, 12 fungal and 33 bacterial isolates were genetically identified. Thirteen bacterial isolates belonging to nine potential PGPR species were then applied to tomato seedlings established in sterile substrate. The ability of these bacteria to produce indole acetic acid (IAA) and solubilize phosphate was also evaluated. They all were IAA producers and solubilized phosphate. The most interesting strains for growth promotion were found to be the isolates Pseudomonas palleroniana B10, Bacillus subtilis B25, Bacillus aryabhattai B29 and Pseudomonas fluorescens B17. The isolates P. fluorescens B17, B. aryabhattai B29, B. subtilis B18 and Pseudomonas moraviensis B6 also increased root growth. This study proposed a quick protocol for isolating and testing potential endophytic PGPR that should be characterized further for the direct and indirect mechanisms of growth promotion.

8.
Microorganisms ; 9(9)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34576819

RESUMEN

Agriculture is in need of alternative products to conventional phytopharmaceutical treatments from chemical industry. One solution is the use of natural microorganisms with beneficial properties to ensure crop yields and plant health. In the present study, we focused our analyses on a bacterium referred as strain B25 and belonging to the species Bacillus velezensis (synonym B. amyloliquefaciens subsp. plantarum or B. methylotrophicus), a promising plant growth promoting rhizobacterium (PGPR) and an inhibitor of pathogenic fungi inducing crops diseases. B25 strain activities were investigated. Its genes are well preserved, with their majority being common with other Bacillus spp. strains and responsible for the biosynthesis of secondary metabolites known to be involved in biocontrol and plant growth-promoting activities. No antibiotic resistance genes were found in the B25 strain plasmid. In vitro and in planta tests were conducted to confirm these PGPR and biocontrol properties, showing its efficiency against 13 different pathogenic fungi through antibiosis mechanism. B25 strain also showed good capacities to quickly colonize its environment, to solubilize phosphorus and to produce siderophores and little amounts of auxin-type phytohormones (around 13,051 µg/mL after 32 h). All these findings combined to the fact that B25 demonstrated good properties for industrialization of the production and an environmental-friendly profile, led to its commercialization under market authorization since 2018 in several biostimulant preparations and opened its potential use as a biocontrol agent.

9.
Life (Basel) ; 11(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946556

RESUMEN

Coffee agroforestry systems could reconcile agricultural and environmental objectives. While pests and diseases can reduce yield, their interactions with shade and nutrition have been rarely researched, and are particularly lacking in perennial systems. We hypothesized that intermediate shade levels could reduce coffee pests while excess shade could favor fungal diseases. We hypothesized that organic rather than mineral fertilization would better synchronize with nutrient uptake and higher nutrient inputs would be associated with reduced pest and disease damage due to higher plant vigor, yet effects would be less obvious in shaded plots as coffee growth would be light-limited. Using three-year-old trees of Coffea canephora var. Robusta (robusta coffee) in the Ecuadorian Amazon, we compared a full-sun system with four shading methods creating different shade levels: (1) Myroxylon balsamum; (2) Inga edulis; (3) Erythrina spp.; or, (4) Erythrina spp. plus Myroxylon balsamum. Conventional farming at either (1) moderate or (2) intensified input and organic farming at (3) low or (4) intensified input were compared in a split-plot design with shade as the main plot factor and farming practice as the sub-plot factor. The infestation of the following pests and disease incidences were evaluated monthly during the dry season: brown twig beetle (Xylosandrus morigerus), coffee leaf miner (Leucoptera coffeella), coffee berry borer (Hypothenemus hampei), anthracnose disease (Colletotrichum spp.), thread blight (Pellicularia koleroga), and cercospora leaf spot (Cercospora coffeicola). Coffee berry borer and brown twig beetle infestation were both reduced by 7% in intensified organic treatments compared to intensified conventional treatments. Colonization of coffee berry borer holes in coffee berries by the entomopathogenic fungus Beauveria bassiana was also assessed. Brown twig beetle infestation was significantly higher under full sun than under Inga edulis, yet no other shade effects were detected. We demonstrate for the first time how intensified input use might promote pest populations and thus ultimately lead to robusta coffee yield losses.

10.
Microbiol Resour Announc ; 10(13)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795338

RESUMEN

Apilactobacillus kunkeei is a fructophilic lactic acid bacterium found in fructose-rich environments such as flowers, fruits, fermented food, honey, and honeydew, as well as in the guts of fructose-feeding insects. We report here the draft genome sequences of three Apilactobacillus kunkeei strains isolated from the gut microbial community of three honeybees.

11.
Pest Manag Sci ; 77(5): 2350-2357, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33421266

RESUMEN

BACKGROUND: The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) is a serious pest of maize. Farming systems such as push-pull or maize-legume intercropping have been reported to reduce FAW infestations significantly. However, the exact mechanisms involved in FAW management have not been practically elucidated. We therefore assessed larval host preference, feeding and survival rate when exposed to four host plants commonly used in push-pull and legume intercropping. We also compared adult moths' oviposition preference between maize and other grasses used as trap crops in push-pull. RESULTS: The larval orientation and settlement study showed that maize was the most preferred host plant followed by bean, desmodium and Brachiaria brizantha cv Mulato II. The larval arrest and dispersal experiment showed that mean number of larvae was significantly higher on maize than on Desmodium or B. brizantha cv Mulato II. However, no significant differences were found between maize and bean after 24 h. Maize was the most consumed plant, followed by bean, desmodium and finally brachiaria. The mean percentage of survival to the pupation stage was significantly higher on maize. The study on FAW oviposition preference showed no significant differences in egg deposited between maize and other grasses. However, B. brizantha cv Xaraes, which received more eggs than maize, could be a promising alternative to B. brizantha cv Mulato II for the control of FAW. CONCLUSION: The study provides a better understanding of the mechanisms involved in the control of fall armyworm under the push-pull and maize legume intercropping. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Brachiaria , Phaseolus , África , Animales , Femenino , Larva , Spodoptera , Zea mays
12.
Mol Ecol Resour ; 21(2): 433-447, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33047508

RESUMEN

High-throughput sequencing has become an accurate method for the identification of species present in soil, water, faeces, gut or stomach contents. However, information at the species level is limited due to the choice of short barcodes and based on the idea that DNA is too degraded to allow longer sequences to be amplified. We have therefore developed a long DNA metabarcoding method based on the sequencing of short reads followed by de novo assembly, which can precisely identify the taxonomic groups of organisms associated with complex diets, such as omnivorous individuals. The procedure includes 11 different primer pairs targeting the COI gene, the large subunit of the ribulose-1,5-bisphosphate carboxylase gene, the maturase K gene, the 28S rRNA and the trnL-trnF chloroplastic region. We validated this approach using 32 faeces samples from an omnivorous reptile, the European pond turtle (Emys orbicularis, L. 1758). This metabarcoding approach was assessed using controlled experiments including mock communities and faecal samples from captive feeding trials. The method allowed us to accurately identify prey DNA present in the diet of the European pond turtles to the species level in most of the cases (82.4%), based on the amplicon lengths of multiple markers (168-1,379 bp, average 546 bp), and produced by de novo assembly. The proposed approach can be adapted to analyse various diets, in numerous conservation and ecological applications. It is consequently appropriate for detecting fine dietary variations among individuals, populations and species as well as for the identification of rare food items.


Asunto(s)
Código de Barras del ADN Taxonómico , Dieta/veterinaria , Tortugas , Animales , Heces , Secuenciación de Nucleótidos de Alto Rendimiento
13.
Molecules ; 25(23)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291490

RESUMEN

Fungi and oomycetes release volatiles into their environment which could be used for olfactory detection and identification of these organisms by electronic-nose (e-nose). The aim of this study was to survey volatile compound emission using an e-nose device and to identify released molecules through solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) analysis to ultimately develop a detection system for fungi and fungi-like organisms. To this end, cultures of eight fungi (Armillaria gallica, Armillaria ostoyae, Fusarium avenaceum, Fusarium culmorum, Fusarium oxysporum, Fusarium poae, Rhizoctonia solani, Trichoderma asperellum) and four oomycetes (Phytophthora cactorum, P. cinnamomi, P. plurivora, P. ramorum) were tested with the e-nose system and investigated by means of SPME-GC/MS. Strains of F. poae, R. solani and T. asperellum appeared to be the most odoriferous. All investigated fungal species (except R. solani) produced sesquiterpenes in variable amounts, in contrast to the tested oomycetes strains. Other molecules such as aliphatic hydrocarbons, alcohols, aldehydes, esters and benzene derivatives were found in all samples. The results suggested that the major differences between respective VOC emission ranges of the tested species lie in sesquiterpene production, with fungi emitting some while oomycetes released none or smaller amounts of such molecules. Our e-nose system could discriminate between the odors emitted by P. ramorum, F. poae, T. asperellum and R. solani, which accounted for over 88% of the PCA variance. These preliminary results of fungal and oomycete detection make the e-nose device suitable for further sensor design as a potential tool for forest managers, other plant managers, as well as regulatory agencies such as quarantine services.


Asunto(s)
Hongos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Oomicetos/química , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/química , Nariz Electrónica , Odorantes/análisis , Olfato
14.
Microbiol Resour Announc ; 9(37)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912913

RESUMEN

Bacillus licheniformis is a well-known industrial bacterium. New strains show interesting properties of biostimulants and biological control agents for agriculture. Here, we report the draft genome sequence, obtained with an Illumina MiniSeq system, of strain UASWS1606 of the bacterium Bacillus licheniformis, which is being developed as an agricultural biostimulant.

15.
Microbiol Resour Announc ; 9(33)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32817155

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) include species in the genera Bacillus, Paenibacillus, and Pseudomonas We report here the draft genome sequences of the strains Pseudomonas koreensis UASWS1668 and Bacillus megaterium UASWS1667, isolated from a horse chestnut tree, and Paenibacillus sp. strain UASWS1643, isolated from a tomato stem. Auxin production and phosphate solubilization were biochemically confirmed.

16.
J Org Chem ; 84(21): 13665-13675, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553185

RESUMEN

The cyclization of a series of nonheterocyclic allenyl aryl ketones was examined using boron trifluoride etherate and indium triflate to mediate the reaction. Yields with BF3 were low in most instances due mainly to competitive destruction of the substrates. With In(OTf)3, there was less decomposition, and the yields of the cyclized product were much higher, but only for substrates with electron-donating substituents. Cyclization did not occur without those substituents. A computational study using the ωB97X-D/6-311+G(2d,p)//ωB97X-D/6-31+G(d,p) method confirmed better stability of the σ-complexed substrate by indium(III) and that meta-substituents on the phenyl ring of the substrate significantly influenced the activation barrier of the cyclization, whereas the effect of para-substituents was almost negligible. The computational results supported the idea that the cyclization is a 4π-electrocyclization and not a 5-endo-dig ring closure as had been proposed in the literature.

17.
PLoS One ; 14(9): e0222854, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31560730

RESUMEN

The reduction of synthetic fungicides in agriculture is necessary to guarantee a sustainable production that protects the environment and consumers' health. Downy mildew caused by the oomycete Plasmopara viticola is the major pathogen in viticulture worldwide and responsible for up to 60% of pesticide treatments. Alternatives to reduce fungicides are thus utterly needed to ensure sustainable vineyard-ecosystems, consumer health and public acceptance. Essential oils (EOs) are amongst the most promising natural plant protection alternatives and have shown their antibacterial, antiviral and antifungal properties on several agricultural crops. However, the efficiency of EOs highly depends on timing, application method and the molecular interactions between the host, the pathogen and EO. Despite proven EO efficiency, the underlying processes are still not understood and remain a black box. The objectives of the present study were: a) to evaluate whether a continuous fumigation of a particular EO can control downy mildew in order to circumvent the drawbacks of direct application, b) to decipher molecular mechanisms that could be triggered in the host and the pathogen by EO application and c) to try to differentiate whether essential oils directly repress the oomycete or act as plant resistance primers. To achieve this a custom-made climatic chamber was constructed that enabled a continuous fumigation of potted vines with different EOs during long-term experiments. The grapevine (Vitis vinifera) cv Chasselas was chosen in reason of its high susceptibility to Plasmopara viticola. Grapevine cuttings were infected with P. viticola and subsequently exposed to continuous fumigation of different EOs at different concentrations, during 2 application time spans (24 hours and 10 days). Experiments were stopped when infection symptoms were clearly observed on the leaves of the control plants. Plant physiology (photosynthesis and growth rate parameters) were recorded and leaves were sampled at different time points for subsequent RNA extraction and transcriptomics analysis. Strikingly, the Oregano vulgare EO vapour treatment during 24h post-infection proved to be sufficient to reduce downy mildew development by 95%. Total RNA was extracted from leaves of 24h and 10d treatments and used for whole transcriptome shotgun sequencing (RNA-seq). Sequenced reads were then mapped onto the V. vinifera and P. viticola genomes. Less than 1% of reads could be mapped onto the P. viticola genome from treated samples, whereas up to 30% reads from the controls mapped onto the P. viticola genome, thereby confirming the visual observation of P. viticola absence in the treated plants. On average, 80% of reads could be mapped onto the V. vinifera genome for differential expression analysis, which yielded 4800 modulated genes. Transcriptomic data clearly showed that the treatment triggered the plant's innate immune system with genes involved in salicylic, jasmonic acid and ethylene synthesis and signaling, activating Pathogenesis-Related-proteins as well as phytoalexin synthesis. These results elucidate EO-host-pathogen interactions for the first time and indicate that the antifungal efficiency of EO is mainly due to the triggering of resistance pathways inside the host plants. This is of major importance for the production and research on biopesticides, plant stimulation products and for resistance-breeding strategies.


Asunto(s)
Fungicidas Industriales/administración & dosificación , Aceites Volátiles/administración & dosificación , Oomicetos/patogenicidad , Origanum/química , Enfermedades de las Plantas/prevención & control , Aceites de Plantas/administración & dosificación , Vitis/inmunología , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/efectos de los fármacos , Resistencia a la Enfermedad/inmunología , Fumigación , Fungicidas Industriales/toxicidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/inmunología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/efectos de los fármacos , Aceites Volátiles/toxicidad , Oxilipinas/metabolismo , Fotosíntesis/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Aceites de Plantas/toxicidad , Sesquiterpenos/metabolismo , Vitis/efectos de los fármacos , Vitis/microbiología , Fitoalexinas
18.
Toxins (Basel) ; 11(2)2019 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-30744109

RESUMEN

Routine identification of pathogens by MALDI-TOF MS (matrix-assisted laser desorption ionisation time-of-flight mass spectrometry) is based on the fingerprint of intracellular proteins. This work evaluated the use of MALDI-TOF MS for the identification of extracellular pathogen factors. A Staphylococcus aureus isolate from a food contaminant was exponentially grown in liquid cultures. Secreted proteins were collected using methanol⁻ chloroform precipitation and analysed by MALDI-TOF MS. A main peak m/z 28,250 was demonstrated, which was identified as S.aureus enterotoxin type B (SEB) by using the pure authentic SEB reference of 28.2 kDa and by amino acid sequence analysis. SEB was also detected in this intact form following pasteurization and cooking treatments. Further application of the elaborated MALDI-TOF MS protocol resulted in the detection of SEA at m/z 27,032 and SEC at m/z 27,629. In conclusion, a simple sample preparation from S.aureus cultures and an easy-to-perform identification of pathogen factors SE in intact form represents a promising next-generation application of MALDI-TOF MS.


Asunto(s)
Enterotoxinas/análisis , Staphylococcus aureus , Superantígenos/análisis , Animales , Técnicas Bacteriológicas , Leche/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
Artículo en Inglés | MEDLINE | ID: mdl-30533614

RESUMEN

We report the draft genome sequence of strain 1312 of Pseudomonas putida, which could be interesting to develop as a biostimulant for agriculture and soil depollution treatments.

20.
Artículo en Inglés | MEDLINE | ID: mdl-30533620

RESUMEN

We report here the draft genome sequence of strain 4014 of Pseudomonas aeruginosa, a common human pathogen, isolated from soil in France. This sequence predicts resistance to multiple antibiotics, including vancomycin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...